What is Data Science?

Alephnet’s data science as a service ecosystem empowers all companies to connect data to aspirational outcomes.

Data science is an umbrella term to describe the entire complex and multistep processes used to extract value from data.

Data science enables us to make sense of the vast amounts of information that deliver intelligence and insights enabling us to do more.

Data scientists use various forms of artificial intelligence to connect data insights to valuable outcomes.

It’s a Digital World

With 4.388 bn internet users, 5.112 bn mobile users & 3.484 bn active social media users worldwide.

-Global Digital Reports 2020

In a time when large amounts of information are widely accessible and circulated the capability to ingest, analyze and act on contextual insights has become instantaneous. Data is taking center stage as the lead role in a plethora of industries and innovations globally.

Leaders who embrace data science and the use of AI weaving into the organization and culture develop systems of actionable insights to out-perform their competition.

    The Rise of Data Science and AI

    Although AI has been around since the 1950s, it is only recently that the technology has begun to be clearly visible in real-world applications. In the last 4 years, investment in AI has dramatically risen.

    The advancement and the seed that lies at the core of the rise of  data science and AI is primarily due to the following three factors:

     

    • Ready access to big data generated from e-commerce, businesses, governments, science, wearables, and social media.
    • The improvement of machine learning (ML) algorithms serve as a consequence of large amounts of available data.
    • Greater computing power and the rise of cloud-based services – which helps run sophisticated machine learning algorithms.
    Data Science Advantaged

    The largest companies globally, from Google to Amazon, and Facebook – to venture capitalized, Uber-growth startups in a race to become Unicorns– all drive business performance through Data-enabled business models leveraging data science.

    These enterprises use data science to improve all business decisions. They treat insights, not just data, as a business asset generating a complete view of data; Real-time insight with the ability to take real-time, immediate, contextualized action across all business activities to achieve better top and bottom-line results. They are dynamically positioned to delight customers, improve relationships and sustain a competitive advantage.

    Data Science Use Cases

    A single source of trustworthy data empowers an organization with analytical capabilities to derive actionable business intelligence across all activities.

    Data analytics enable the continuous sourcing of opportunities, solving problems in real-time, deploying test cases, evaluating results, and iterating.

    With Data Science and AI, the Possibilities are Endless

    The ability to generate real-time insights draw the intersection of roles and function ever closer, blurring and redefining responsibilities and accountabilities.

    The traditional value chain activities are evolving at speed, but so too is the competitive landscape where rivalry is shifting from defined verticals and industries to broad ecosystems.

    We see this in the transition from automobiles to mobility solutions. Companies like Spotify are a great example of how users services have entered the mainstream. Consumers are now paying to access things temporarily with hyper-personalization that they used to buy outright.

    From Banking to fintech platforms,  production lines to intelligent factories traditional boundaries are collapsing almost everywhere. Competitors are coming from new directions and pursuing different goals from those of familiar rivals.

    Data Science and the use of AI is Industry Agnostic

    From retail stores updating and optimizing prices in real-time that simultaneously leverage machine learning with weather data to predict product demand.  Tied to automated inventory management and competitor pricing companies maximize the availability of in-demand products, at the right time and price to help elevate sales.

    Companies automate procurement management and optimize vendor spending.

    Banks automate customer loan approval. Non-traditional transactional data ingested by predictive AI algorithms enable better credit quality scoring. Manpower and time are saved, loan defaults are reduced while loan portfolios grow and performance improves.

    Augmented intelligence in healthcare already saves lives by improving the accuracy of identifying heart failure made by dispatchers during emergency phone calls. Natural language processing and other forms of AI translate verbal and non-verbal data such as the tone of voice and breathing patterns. Data analyzed from millions of prior emergency calls enables AI models to look for signs of cardiac arrest, warn and make recommendations to dispatchers during calls. Correct and speedy diagnoses of heart attacks have increased by over 20% saving many lives.

    A Data Science Framework

    Companies need a new approach to strategy for managing in a world of ecosystem disruption. An insights ecosystem empowers an organization to drive innovation, achieve business agility, and resilience in the digital economy.

    Insight-Driven Companies are more Agile and Resilient

    Average growth rates of insights enabled companies

    Public 27% CAGR
    Private 40% CAGR

    Average growth rates without insights

    GDP +3.6% CAGR

    * Sources: Forrester, Morningstar, PitchBook, The Economist Intelligence Unit; See also: “The Insights-Driven Business” Forrester report 

    Insight-driven companies are

    23 X more likely to acquire customers
    19 X more likely to be profitable
    2.6 X more likely to exceed competitor’s ROI

    * Sources: IDC, Gartner Forrester 2019 / 2020

    44% of larger organizations fear they’ll lose out to startups if they’re too slow to evaluate and deploy Al in their organization

    – Microsoft Digital Research

    It is expected that the global artificial intelligence market will grow at a compound annual growth rate of 42.2% from 2020 to 2027 to reach USD 733.6 billion by the end of 2027

    – Insights from Grandview Research

      Data Science Process

      Turning data into actionable insights, greater efficiencies, cost savings, elevating productivity, workforce engagement, revenue, and overall organizational value through a simple 3-step methodology;

      Gather, Analyze, and Act.

      Smart outcomes

      • Automation; improved efficiency, lower costs, elevated productivity
      • Anomaly & Trend Detection; detect threats and risks earlier
      • Auto Discovery; gain insights to empower the workforce
      • Catalyst Detection; benchmarking, R&D advanced deeper learning
      • Enrichment Pipeline; drive new opportunities, services, and products
      • Smart Recommendations; augmented intelligence
      • System of insights

      Key Barriers to Entry and Challenges in Data Science

      Data Science - Barriers to Entry And Digital Challenges

      Barriers to entry and digital challenges

      To compete in the digital economy organizations must overcome a range of challenges;

      • Awareness and cultural appetite to leverage data
      • A willingness to commit and invest including workforce adoption
      • Data access, quality, activation, analytics application
      • Growing regulations
      • Access to frontend and backend resources

      Other trends in Data Science and AI

       

      Organizational Culture Data Maturity

      Most organizations want to be more data-driven in their decision-making, but the ones that succeed are those in which leaders commit to making the investments they need to realize their goals. These commitments range from talent, processes, and the broad technologies available to help adopt and deploy data and analytics at scale.

      Research from IDC shows 83% of CEOs want their organization to be more data-driven and that data-forward organizations with mature data cultures experience improved outcomes lifting business metrics for better top and bottom-line results.

      Benefits include:

      • Greater competitive differentiation
      • Faster speed-to-market
      • Increased profits
      • Higher employee satisfaction

      A Data Culture Fuels Value in Data-Driven Companies

      In a digital economy, senior leaders are tasked with transforming their business with a focus on developing agility and resilience.

      The most successful companies embrace a data-driven culture. They are committed to realizing value from data, encouraging data exploration and curiosity. They realize the value of data by empowering the entire workforce at all levels to make better data-enabled decisions. They make data talent a priority and seek to break down organizational silos to drive collaboration and develop company-wide systems of insight.

      Companies prioritizing data culture empower data literate talent who adopt data science to take advantage of opportunities, drive growth, innovation and differentiate the organization from competitors.

      Data Access, Quality, and Activation Challenges

      Companies have a growing complexity of systems.

      Many companies have specific software for each function from Payroll, Accounting, HR, ERP, Billing, CRM, analytics, and industry-unique systems. Data and technology stacks house growing amounts of fast-changing data, scattered across the organization, often with no standard structure and external sources of great value, not considered or captured at all.

      Up to 95% of all data is unstructured – social media content, call transcripts, video, audio, and much more.

      Unstructured data is often where the most insight is mined, but it’s also largely not used. As a result, most organizations use a mere 1% of available data to help improve decisions. Source: Hopkins et al. Forrester.

      Impact 

      • Cumbersome access consumes lots of time.
      • Up to 30% of an employee’s workday can be spent searching and gathering data – 2 ½ hours per day
      • Missing information stymies business application
      • Opportunity loss due to inability to find relevant data
      • Productivity loss
        • error-prone
        • data duplication
        • shifts concern from missing data to bad data.

      Companies attempt to empower their workforce, make them citizen data scientists, only to fail partly because the approach has been technology-focused and the skillsets necessary to manage a data product lifecycle are broad and uncommon.

      Growing Regulations

      Data science and the use of AI bring unlimited potential, but with great potential comes significant risks.

      Using data science and AI to support business-critical decisions makes it vital to understand what AI is doing and why. Is it providing valuable contextual insight or making accurate, bias-aware decisions? Does it violate privacy regulations? Can you govern and monitor the models to ensure compliance with progressive regulations?

      AI development by someone without the expertise and proper training, or operating without appropriate controls can create something dangerous; not being able to explain the model’s results, problems may become evident after system implementation, leaving companies with severe liability. Even highly qualified engineers’ most sophisticated AI systems can cause explainability reinforcement risks and unintended consequences.

      AI should be designed, tested, and maintained by people with relevant expertise.

      When organizations consider how to implement and maximize data science and AI use, they must be aware of the demand and difficulty of attracting and retaining data scientists that impact not only the targeted nature and quality of outcomes but also the ability to manage and mitigate growing risks.

      Data-Science as a Service platform elegantly empowers all companies to solve these growing, critical pain points and drive a return on data.

      Access to Frontend and Backend Resources

      Data science and the use of AI is not a choice anymore it’s necessary for long-term success. To succeed companies need to utilize technology, knowledge, computational power, access to data, and the expertise to execute.

      AI requires data, and data without context is really just noise. Despite much progress, it’s still difficult to use data and analytics to understand and predict many of the important phenomena in organizations. Predictive models require a substantial amount of past data and knowledge to create and use so without the necessary resources can be limited to how, when, or if they can be deployed.

      There are many backend tools and solutions designed to extract value from data. The backend is the part that deals with hardware, efficient computing, and data storage infrastructure, or what is often referred to as data engineering.

      The frontend data scientist(s) landscape is more challenging.

      The Data Science  & AI Landscape – Tech & Data Scientist Spectrum provides a deeper dive into the evolving landscape and battle for resources.

      Solution

      Data studio as a service provides the framework and roadmap for companies to accelerate the adoption and benefits of data science.

      The service encompasses three modular solutions to meet each client’s specific needs that bring progressive value and benefit in each part.

      They are part of the broader DSaaS ecosystem – leveling the playing field – making on-demand, and subscription-based data science front and backend resources accessible to all companies.